第71回塑性加工連合講演会

共 催: 軽金属学会, 精密工学会,日本金属学会, 日本機械学会, 日本材料学会,日本鉄鋼協会,日本銅学会, 日本塑性加工学会(幹事学会)

協 賛: 高分子学会,日本トライボロジー学会,日本複合材料学会,日本レオロジー学会,プラスチック成形加工学会,溶接学会,型技術協会,日本合成樹脂技術協会,

粉体粉末冶金協会,日本鍛圧機械工業会

後 援: 日刊工業新聞社

テーマセッション 1 「鍛造加工の高精度化・高機能化のための新技術の進展」

テーマセッション2「温間・熱間金型の型技術の新展開」

テーマセッション3「形状および内部構造や組成まで進化するポーラス材料」

テーマセッション4「3D積層造形技術の最前線」

テーマセッション 5 「塑性加工に役立つ結晶塑性シミュレーション」

テーマセッション6「塑性加工における遅れ破壊評価とその対策」

テーマセッション7「16th INTERNATIONAL SESSION 2020」(中止となりました)

テーマセッション8「今こそ期待されるチューブフォーミング」

テーマセッション9「半溶融・半凝固加工、溶融加工の最新動向」

テーマセッション10「板材・バルク材シミュレーションの高精度化に資する、材料や環境条件のモデリング技術」

			第1会場				第2会場				第3会場				第4会場				第5会場				第6会場				第7会場	
	時間	番号	座長	セッション	時間	番号	座長	セッション	時間	番号	座長	セッション	時間	番号	座長	セッション	時間番	番号	座長	セッション	時間	番号	座長	セッション	時間	番号	座長	セッション
	9:20 \$ 10:40	101 \$ 104	早川	テーマ セッション 1- I	9:20 \$ 10:40	201 \$ 204	星野	押出し I	9:40 \$ 10:40	302 \$ 304	寺前	スピニング	9:20 \$ 10:40	401 \$ 404	桑原	板材成形I	5	501 \$ 504	岡田	インクリメンタル フォーミング I	9:20 \$ 10:40	601 \$ 604	原田	表面改質 I	9:40 \$ 10:40	702 \$ 704	白寄	テーマ セッション 8- I
11 月	10:50 \$ 12:30	106 \$ 110	北村	テーマ セッション 1-Ⅱ	10:50 \$ 12:10	206 \$ 209	上谷	押出し I	10:50 \$ 12:10	306 \$ 309	吉田(健) 浜 常見	テーマ セッション 5	10:50 \$ 12:30	406 \$ 410	瀧澤	板材成形Ⅱ	5	506 \$ 509	鷺坂	インクリメンタル フォーミング II	10:50 \$ 11:50	606 \$ 608	酒井	表面改質 II	10:50 \$ 12:10	706 \$ 709	水村	テーマ セッション 8- II
14 日														12:30	~13:30 休	憩時間	-											
£	13:30 \$ 15:10	111 \$ 115	大津	テーマ セッション 1-Ⅲ	13:30 \$ 14:30	211 \$ 213	吉原	テーマ セッション 2	13:30 \$ 15:10	311 \$ 315	柳田	温・熱間プレス成形・サーボ応用加工	13:30 \$ 15:10	411 \$ 415	蔦森	板材成形皿		511 \$ 515	陳	テーマ セッション 4- I	13:30 \$ 15:10	S	神	材料特性	13:50 \$ 15:10	712 \$ 715	内海	テーマ セッション 8-Ⅲ
	15:20 \$ 17:00	116 \$ 120	松本	テーマ セッション 1-Ⅳ	15:20 \$ 16:20	216 \$ 218	古島	マイクロ フォーミング	15:20 \$ 17:20	316 \$ 321	長崎湯川	圧延	15:20 \$ 17:00	416 \$ 420	奥出	板材成形Ⅳ	5	516 \$ 520	佐藤	テーマ セッション 4- II	15:20 \$ 17:20	S	糸井 山下	高エネルギー・ 高速度加工	15:20 \$ 17:00	716 \$ 720	松野 北条 森	テーマ セッション 6
	9:00 \$ 10:40	126 \$ 130	山中	鍛造 I	9:00 \$ 10:40	226 \$ 230	西田	テーマ セッション 9- I	9:00 \$ 10:40	326 \$ 330	笹田	せん断 I	9:00 \$ 10:40	426 \$ 430	日野	板材成形 V	5	526 \$ 530	中本	テーマ セッション 4-Ⅲ	9:00 \$ 10:20	626 \$ 629	杉友	テーマ セッション 10- I	9:00 \$ 10:40	726 \$ 730	行武	接合 I
11 月 15 日(日)	10:50 \$ 12:10	131 \$ 134	前野	鍛造 Ⅱ	10:50 \$ 12:30	231 \$ 235	羽賀	テーマ セッション 9- II	10:50 \$ 12:30	331 \$ 335	安富	せん断 II	10:50 \$ 12:30	431 \$ 435	吉村	テーマ セッション 3- I	S	531 \$ 534	野村	テーマ セッション 4-IV	10:50 \$ 12:30	5	吉田(佳)	テーマ セッション 10- II	10:50 \$ 11:50	731 \$ 733	木村(南)	接合 Ⅱ
1														12:30	~13:30 休	憩時間												
	13:30 \$ 14:50	136 \$ 139	金	鍛造 皿	13:30 \$ 14:30	236 \$ 238	飯塚	粉末成形	13:30 \$ 15:10	336 \$ 340	山崎	せん断 皿	13:30 \$ 15:10	436 \$ 440	半谷	テーマ セッション 3-Ⅱ	S	536 \$ 538	木村(貴)	テーマ セッション 4- V	13:30 \$ 15:10	636 \$ 640	浜	テーマ セッション 10-皿	13:30 \$ 14:50	736 \$ 739	小平	接合 皿

11月14日(土) 第1会場	11月14日(土) 第2会場	11月14日(土) 第3会場	11月14日(土) 第4会場	11月14日(土) 第5会場	11月14日(土) 第6会場	11月14日(土) 第7会場
9:20~10:40 テーマセッション1-I 鍛造加工の高精度化・高機能化の ための新技術の進展 (库長 早川 邦夫 君)	9:20~10:40 押出し I (座長 星野 倫彦君)	9:40~10:40 スピニング (摩長 寺前 修裁 君)	9:20~10:40 板材成形 I (序卷 泰原 利底 君)	9:20~10:40 インクリメンタルフォーミング I (庠長 岡田 将人君)	9:20~10:40 表面改質 I	9:40~10:40 テーマセッション8- I 今こそ期待される チューブフォーミング (産長 白寄 篤君)
	▼ 201 温間ECAE加工と冷間溝ロール圧 ★ 延によるSUS304の高強度化 塑 学 *相田 友輝 (東京電機大・院)		401 面内せん断変形を用いた曲がり 部品のプレス成形法の開発 - 第二報:フロントサイドメン バー模擬部品の試作 - 塑 正 *藤井 祐輔 (JFEスチール) " ト部 正樹 (") 川崎 雄司 (") エ井 良清 (")	501 サブナノ秒マイクロチップレー ザーを用いたレーザービーン フォーミング (第五報 純チタンの変形モード) 塑 正 *驚坂 芳弘	601 SEM-EBSDによる熱処理を施した ★ 超硬合金のひずみ評価 塑 学 *三島 悠太郎 (成蹊大・院) 塑 正 酒井 孝 (成蹊大) 機 正 中村 裕紀 (豊田高専)	
ト前処理の効果	韓 剛 (元日立金属)	塑 正 *権藤 詩織 (産総研) " 荒井 裕彦 (") " 梶野 智史 (")	報 一成形性向上メカニズムと部分 加熱手法提案— 塑 正 *松木 優一 (JFEスチール) 飛田 隼佑(") 申川		塑 学 *石井 梨里香	流動と成形性 塑 正 *安井 盂
103 フッ素フリー粘土化法潤滑膜」 ★ るアルミニウム冷間鍛造潤滑剤 のリング圧縮試験 塑 正 *能浦 崇太 (貴和化学薬品 " 福垣内 暁 (愛媛大) " 北村 憲彦 (名工大)	" 梶川 翔平 (")	★ スピニング加工性に及ぼすパス 回数の影響 塑 学 *小林 功典 (茨城大・院) 塑 正 小林 純也 (茨城大)	★ を向上させる端面加熱技術-第2 報	動車実部品形状の成形検証 塑 正 *小山田 圭吾 (日産自動車)	の接触状態のインプロセスモニ タリング -製品材質による超音波伝播特性- 塑 正 *萩野 直人	 管のハイドロフォーム性向上 塑 正 安井 孟 (IHIインフラシステム) 市原 正一郎(芝浦工大) 塑 名 *真鍋 健一 (都立大)
★ 表面と潤滑油添加剤の反応性 塑 正 *髙木 智宏 (ENEOS) " 北村 憲彦 (名工大)	204 A7075合金の熱間押出し加工におけるテアリング欠陥に及ぼすダイコーティングの影響 塑 学 *中川 翔太 (富山大・院) 塑 正 船塚 達也 (富山大) "高辻 則夫 (") 党田 邦明 (Northwestern University) "ゲンパンルン スカンタカン (MTEC)		★ 動車部品の寸法精度変動低減技 術の開発 塑 正 *飛田 集佑 (JFEスチール)	★ ングによる復曲面成形 -曲率に及ぼすピンの送り速度 の影響 - 塑 学 *岡田 理紀 (東海大・院)	★ ル処理金型の潤滑機構の検討	★ ランジ性評価技術の開発塑 正 窪田 紘明 (東海大)塑 学 *今井 大輔(東海大・院)

[★]は、「優秀論文講演奨励賞」の対象講演でしたが、 取りやめとなりました.

11月14日(土) 第1会場 11月	月14日(土) 第2会場 11月14	日(土) 第3会場	11月14日(土) 第4会場	11月14日(土) 第5会場	11月14日(土) 第6会場	11月14日(土) 第7会場
10:50~12:30 テーマセッション1-II 10:50~12:1	0 10:50~12:10	テーマセッション5	10:50~12:30	10:50~12:10	10:50~11:50	10:50~12:10 テーマセッション8-Ⅱ
鍛造加工の高精度化・高機能化の ための新技術の進展		に役立つ結晶塑性 ミュレーション	板材成形Ⅱ	インクリメンタルフォーミング Ⅱ	表面改質Ⅱ	今こそ期待される チューブフォーミング
(座長 北村 憲彦 君) (J	座長 上谷 俊平 君) (座長 吉田 健	吾,浜 孝之,常見 祐介 君)	(座長 瀧澤 英男君)	(座長 鷺坂 芳弘 君)	(座長 酒井 孝 君)	(座長 水村 正昭 君)
		合金板の塑性異方性に 験および結晶塑性モデ		506 インクリメンタルフォーミング ★ による四角錘台成形時の荷重に 与える工具の超音波振動の影響	606 バフ研磨技術のデジタル化・見える 化 - 匠の技プロジェクト報告3 -	706 電磁成形を用いたアルミニウム パイプとCFRPの接合に及ぼすク リアランスの影響
塑 学 * 西 源貴 (静岡大・院) 塑 正 久保田 義弘 (静岡大) ッ 早川 邦夫 () 金 正 塑 名 中村 保 () 塑 正		田 健吾 (静岡大) 崎 康人(静岡大・院)	塑 正 *日野 隆太郎 (広島大) 機 学 渡部 広大 (広島大・院)	遠山 貴大(福井大・院)	鉄 正 *鳥塚 史郎(兵庫県立大) " 松澤 正明(") 矢内 俊一(")	塑 正 *中山 昇 (信州大) " 小平 裕也 (太陽工業) " 小林 信彦 (") 濱 勉 (") 塑 正 松崎 邦男 (産総研)
影響の調査 材料の	たA1-A1203-TiB2-TiC複合 組織と機械的性質	伏関数による深絞り成 レーション	★ 良現象の解析塑 正 *箱山 千春 (中部大)	★ したインクリメンタルフォーミ ングにおける加工パスの作成	ける残留応力分布の数値解析 塑 正 *太田 高裕 (東海大)	707 高縮径率条件下で熱間スピニン ★ グ加工を施したA6063管材の内面 欠陥発生位置とミクロ組織との 関係
	Odhiambo John 塑 学 *本 (鳥取大・院) 塑 正 吉 音田 哲彦 (鳥取大) 原 中春 (")		機 学 伊藤 優希 (中部大・学)	塑 正 大津 雅究 (福井大) 塑 学 *吉田 慎太郎 (福井大・院) 塑 正 三浦 拓也 (福井大) " 岡田 将人 (")	n 原田 泰典 (兵庫県立大) n 麻 寧緒 (阪 大)	塑 学 *瀬田 匠汰 (茨城大・院) 塑 正 小林 純也 (茨城大) 〃 伊藤 吾朗 (〃)
108 画像計測引張試験法を用いたTi- 208 アルミ 17合金の大ひずみ城までの高温 真応カー真ひずみ曲線の高精度 測定	Bに及ぼすAl-Si合金添加の解析にお適用	ける結晶塑性モデルの	★ 並びに応力緩和が形状凍結性に 及ぼす影響の検証	★ けるショット速度とアークハイ トの関係	★ 膜を形成させたマグネシウム合 金の表面層組織と耐食性	708 逃げ有りプラグを用いた回転口 ★ 広げ加工 一成形限界および精度に及ぼす プラグ接触角度の影響—
鉄 正 *鳥塚 史郎 (兵庫県立大) 多賀 公則 (") 鉄 正 伊東 篤志 (")	衣 立夫 (鳥取大) 塑 正 金 音田 哲彦 (") " 岡	孝之 (京大) 頁 啓志 (京大・院) 英俊 (アマダ) 田 直人 (" ") 田 裕彦 (京 大)	(ユニプレス)	(東海大・院) 塑 正 太田 高裕 (東海大)		塑 学 *飯塚 和正 (電通大・院) 塑 正 久保木 孝 (電通大) 〃 梶川 翔平 (〃)
109 Ti-6A1-4V合金のねじりモーショ ★ ン付加鍛造加工と組織変化	2Te2.85Se0.15熱電材料の 309 金属材料		409 サーボプレスを用いたステンレ★ ス鋼容器の振動しごき加工における自動再潤滑			709 ボールスピンフォーミングによ ★ る管中央部へのフレキシブルな 縮径加工
高本 和希 (阪 大) 塑 正 松本 良 (") 金 正	堕谷 **中 整 ** 整 ** 上 ** 1 ** 1 ** 2 ** 2 ** 2 ** 2 ** 2 ** 2 ** 2 ** 2 ** 2 ** 2 ** 3 ** 4 ** 4 ** 5 ** 5 ** 6 ** 7 ** 8 ** 8 ** 9 ** 1 ** 1	島剛(東大生研)	塑 正 安部 洋平(豊橋技科大)塑 学 *安藤 巧 (豊橋技科大・院)塑 正 森 謙一郎(豊橋技科大)	塑 学 *古澤 樹 (静岡大・院) 塑 正 田中 繁一 (静岡大) " 小山田 圭吾 (日産自動車) " 演野 智史 (") " 早川 邦夫 (静岡大)		塑 学 *平間 章太 (電通大・院) 池田 峻之 (") 塑 正 梶川 翔平 (電通大) , 久保木 孝 (")
110 1500トン鍛造シミュレータを用 ★ いた自由鍛造評価手法の開発	- Com VH ZV		410 しごき加工における潤滑剤に添★ 加したセラミック粒子挙動のガラスダイを用いたその場観察			
塑 正 *大竹 拓至 (大同特殊鋼) " 杉野 敦 (") " 岡島 琢磨 (") " 本橋 功会 (物材機構) " 黒田 秀治 (") 鉄 正 御手洗 容子			塑 正 安部 洋平 (豊橋技科大) 塑 学 *市村 昂己 (豊橋技科大・院) 塑 正 森 謙一郎 (豊橋技科大)			
(東大,物材機構)						

[★]は、「優秀論文講演奨励賞」の対象講演でしたが、取りやめとなりました.

講演207はテーマセッション7「16th INTERNATIONAL SESSION 2020」より移動しました.

11月14日(土) 第1会場	11月14日(土) 第2会場	11月14日(土) 第3会場	11月14日(土) 第4会場	11月14日(土) 第5会場	11月14日(土) 第6会場	11月14日(土) 第7会場
鍛鍛造加工の高精度化・高機能化 のための新技術の進展	温間・熱間金型の型技術の新展開	温・熱間プレス成形・ サーボ応用加エ	13:30~15:10 板材成形皿	13:30~15:10 テーマセッション4- I 3D積層造形技術の最前線	13:30~15:10 材料特性	13:50~15:10 テーマセッション8-Ⅲ 今こそ期待される チューブフォーミング
(座長 大津 雅亮 君)	(座長 吉原 正一郎 君)	(座長 柳田 明君)	(座長 蔦森 秀夫 君)	(座長 陳 中春 君)	(座長 神 雅彦 君)	(座長 内海 能亜 君)
"宇都宮裕(")	リー型材設計 (第2報 純チタンの温間鍛造用Sic/Sic型材設計) 塑 正 *相澤 龍彦 (表面機能デザイン研究所) " 吉野 友章 (小松精機工作所) " 白鳥 智美 金 正 福田 達也	★ 成形 塑 学 *谷一 泰正 (金沢大・院) 塑 正 立野 大地 (金沢大)	★ 成形および成形シミュレーション 望 正 * 奥出 裕亮 (都立産技研) 軽 占岡 拓 (") 中村 勲 (")	金属積層造形プロセスと金属粉 末特性	611 A2024-T3の曲げにおける集合組 ★ 織その場観察 塑 学 *鈴木 彩絵 (成蹊大・院) 塑 正 酒井 孝 (成蹊大) " 黄 河 (アマダ) " 金 英俊 (") " 小俣 均 (")	
112 ねじり付加鍛造接合における機 ★ 械学習の援用による接合条件の 検討 塑 学 *橋本 翔 (阪大・院) 塑 正 松本 良 (阪 大) " 宇都宮 裕 (")	212 情報端末/半導体素子へのマイクロテクスチュアリング (第6報AIヒートシンクの熱間プレス型設計)	★ を用いたホットスタンピング成 形品の酸化スケール除去特性塑 正 中村 尚誉	リアランスの影響 塑 正 * 奥出 裕亮 (都立産技研) 軽 ご 岩岡 拓 (") 中村 勲 (")		612 脳動脈瘤塞栓術用医療コイルの ★ カスタムメイド手法の確立 塑 学 *城倉 旭世 (金沢工大・院) 塑 正 瀬川 明夫 (金沢工大)	712 円管下端部の変位制御によるし ★ ごき加工凹部転写成形 塑 学 *石野 淳貴(電通大・院) 塑 正 梶川 翔平 (電通大)
★ 工 (第5報 加圧順序が加工特性に	に最適なPVDコーティングと評価 方法の探索 塑 正 *吉田 善明 (トーヨーエイテック) 鏡艸 浩彰(")	★ たCFRTPハウジング・ケース隅部 の強度評価塑 学 *大島 恭平(大同大・院)	特性変化の均質化法解析 塑 学 古田 綜一郎 (日本工大・院) 塑 正 *瀧澤 英男 (日本工大)	★ 場観察手法を用いた金属粉末の 溶融深さ遷移メカニズムの解明軽 学 *小倉 智哉 (早大・院)	塑 正 窪田 紘明 (東海大)塑 学 *秋元 雄天(東海大・院)	713 管材の内面しごきによるパンチ 半角の影響―しごき加工を用い た管材の差厚加工技術に関する 研究第4報― 塑 正 *河越 奈沙 (日本製鉄) " 田村 翔平 (") 機 正 河内 毅 (")
114 多軸揺動加圧によるすえ込み加工 (第6報 揺動条件と試片アスペクト比による加工特性の違い) 塑 学 * 吉田 結音 (福岡工大・院) 塑 正 広田 健治 (福岡工大) 塑 学 吉見 聖太 (福岡工大・院) 115 薄肉管のねじ転造におけるダイ ★ ス押込み速度の影響 塑 学 * 山本 礼 (名工大・院) ・ 三嶋 章嗣 (三嶋商事) 塑 正 北村 憲彦 (名工大)		★ 潤滑に及ぼす潤滑剤特性のリング圧縮試験による評価 塑 正 前野 智美 (横浜国大) 塑 学 *秋山 武大 (横浜国大・院) 塑 正 前川 陽太 (出光興産) 『 伊藤 彰悟 (") 315 蛍光法を用いた直接観察による バルス成形での材料・工具間の 再潤滑効果検証 塑 正 *恒川 国大	★ つ多孔板のマクロ塑性特性のモデル化と検証 塑 学 *古田 綜一郎 (日本工大・院) 塑 正 瀧澤 英男 (日本工大) 415 ローラボールダイによる機能性	★ のぬれ性の動的評価 塑 正 牧野 武彦 (名工大) 塑 学 *加藤 詩央里 (名工大・院) 515 MDセル構造体の圧縮特性 ★ ーポテンシャルの設定による効果ー 塑 正 牧野 武彦 (名工大)	# 阿部 英嗣 (#) 615 その場中性子回折測定による準 ★ 安定ハイエントロビー合金の塑性変形解析 塑 正 *森 真奈美 (仙台高専) # 山中 謙太 (東北大金研)	造の加工特性評価モデル 塑 正 *牧山 高大 (ものつくり大) 715 極細ステンレス鋼管の空引きに

11月14日(土) 第1会場 11月14日(土) 第2会場	11月14日(土) 第3会場	11月14日(土) 第4会場	11月14日(土) 第5会場	11月14日(土) 第6会場	11月14日(土) 第7会場
15:20~17:00 テーマセッション1-IV 15:20~16:20	15:20~17:20	15:20~17:00	15:20~17:00 テーマセッション4- II	15:20~17:20	15:20~17:00 テーマセッション6
鍛造加工の高精度化・高機能化の ための新技術の進展 マイクロフォーミング	圧延	板材成形Ⅳ	3D積層造形技術の最前線	高エネルギー・高速度加工	塑性加工における遅れ破壊評価と その対策
(座長 松本 良 君) (座長 古島 剛 君)	(座長 長崎 千裕, 湯川 伸樹 君)	(座長 奥出 裕亮 君)	(座長 佐藤 直子 君)	(座長 糸井 貴臣, 山下 実 君)	(座長 松野 崇, 北條 智彦, 森 謙一郎 君)
116 管端部の増肉工程の削減 ★ ** 型 学 * 五島 一輝 (名工大・院) 森 雄次郎 (新郊パイプ工業)	★ るロール材組成の影響塑 学 *上田 陽恒 (名大・院)	★ の引張試験における変形挙動 塑 学 *簑原 慎(芝浦工大・学) 塑 正 吉原 正一郎(芝浦工大)	516 招待講演 アルミニウム合金粉末を用いた レーザ積層造形体における組織 と機械的性質の制御 *木村 貴広(大阪産技研)	塑 正 *山下 実 (岐阜大)	716 超高張力鋼カップ絞り品におけ ★ る表面・内部残留応力分布の測 定 塑 学 *落合 勇太 (鳥取大・院) 塑 正 松野 崇 (鳥取大)
秋田 敬治(") 相澤 龍彦 (表面機能デザイン研究所) 白鳥 智美 (富山大) 1 日鳥 田林大 (富山大) 1 日皇 (富山大) 1 日本 (富山大) 1	317 熱間圧延における鋳片表層の介 ★ 在物周りの変形挙動	(IHIインフラシステム) # 長谷川 収 (都産技高専) # 坂本 誠 (") # 金 英俊 (アマダ) 塑 名 西村 尚 (都立大)	塑 正 中本 貴之 (") 機 正 三木 隆生 (")	617 圧縮着火によるパンチレス衝撃 打抜き性に及ぼす燃料種類の影響	リリス
117 新規凹凸転写技術における転写 217 原子スケール計算による加工中 ★ 精度に及ぼす軟質工具および被	塑 学 *山口 耕平 (名大・院) 塑 正 阿部 英嗣 (名 大) " 湯川 伸樹 (") 鉄 正 永井 真二 (日本製鉄)	417 球頭パンチを用いたSUS304パンチ★ ングシートのプレス絞り成形塑 正 長谷川 収 (都産技高専)		塑 正 *加藤 正仁 (産総研) 村上 周平 (山形県工技セ)	717 陰極チャージ材面内曲げ試験に ★ よるせん断加工部の遅れ破壊耐性評価
塑 学 *西山 拓実 (名城大・院) 塑 正 牧野 武彦 (名工大) 塑 正 吉川 泰晴 (名城大) 塑 学 *鈴木 菜未 (名工大・院)	318 硬質材冷延時の潤滑特性の基礎 ★ 検討	## 吉原 正一郎(芝浦工大) ## 坂本 誠 (都産技高専) ## *瓜生 伎詩 (都産技高専・専) ## 正 金 英俊 (アマダ)		618 金属材料と各種材料の電磁力接 続法の検討	塑 学 *藤井 貴浩 (鳥取大・院) 塑 正 松野 崇 (鳥取大) " 北條 智彦 (東北大) " 浜 孝之 (京 大) 高村 正人 (理 研)
118 新規凹凸転写技術における転写 218 真空中接触電位差測定によるエ ★ 精度に及ぼす摩擦条件の影響 ★ 具皮膜上の凝着過程の定量	" 河西 大輔 (")	塑 名 西村 尚 (都立大)418 連続繊維CFRTPを用いたT字ビー ム成形と剛性評価	518 Al-10%Si-0.4%Mgレーザ積層造形体の疲労特性に及ぼす内部空隙率と熱間等方加圧処理の影響	塑 正 *岡川 啓悟(都産技高専)n 石橋 正基(n)n 糸井 貴臣 (千葉大)	718 超高張力鋼板の穴抜き加工にお ★ ける切口面の残留応力と遅れ破 壊
塑 正 吉川 泰晴 (名城大) 塑 学 *渡邉 雄也(名工大・院)	319 熱間圧延における酸化スケール の動的変形挙動評価 塑 学 *板橋 和樹 (金沢工大・院) 塑 正 瀬川 明夫 (金沢工大)	" 立野 大地 (") 島田 裕大 (コマツ産機) 越後 雄斗 (")	軽 正 *平田 智丈(大阪産技研) " 木村 貴広(")	619 アルミニウム合金薄板と樹脂板 の電磁力接続 塑 正 *石橋 正基(都産技高専) " 岡川 啓悟(") " 糸井 貴臣 (千葉大)	 塑 正 森 謙一郎 (豊橋技科大) 塑 学 *馬場 椋平 (豊橋技科大・院) 塑 正 中村 尚誉 (") 安部 洋平 (豊橋技科大)
	320 ひずみ計測による調質圧延時の ★ 絞りメカニズム調査	419 薄板の面内二軸圧縮試験方法の 検討 -第3報-980MPa級TRIP鋼の等塑 性仕事面の測定	★ り製造されたAlSi10Mg合金の特	620 アルミニウム合金薄板と樹脂板	719 TRIP型マルテンサイト鋼の水素 ★ 脆化特性に及ぼす熱間鍛造の影響
塑 学 *石橋 諒 (静岡大・院) 塑 正 早川 邦夫 (静岡大) 小西 勇美 (鈴秀工業) 塑 学 田京 宏基 (静岡大・院)	塑 正 *馬場 渉 (JFEスチール)n 安原 宏 (n)n 高嶋 由紀雄 (n)n 三宅 勝 (n)	塑 正 * 荻原 裕樹 (JFEスチール)	金 学 *柳瀬 裕太 (香川大・院) 金 正 松本 洋明 (香川大) 宮内 創 (香川県産技セ) 横田 耕三 (")		
★ 学的挙動およびモデリングに及 ぼす影響	止のための圧延評価技術の開発	★ 二軸応力状態下における塑性変 形挙動の実験的検討		★ と穴あけ加工	720 U曲げ試験片の水素脆化と塑性 ★ ひずみ・応力分布の関係
塑 学 *田京 宏基(静岡大・院) 塑 正 早川 邦夫 (静岡大) 塑 学 石橋 諒 (静岡大・院)	(JFEスチール) " 北村 拓也 (") 鉄 正 小笠原 知義 (")	ッ 多田 直哉 (ッ)	精 正 *宮内 創(香川県産技セ) 柳瀬 裕太(香川大・院) 松本 洋明 (香川大) 横田 耕三 (香川県産技セ)		塑 学 *柴山 由樹 (東北大・院) 塑 正 北條 (東北大金研) 鉄 正 小山 元道("") 敷 工 松野 (鳥取大)

[★]は、「優秀論文講演奨励賞」の対象講演でしたが. 取りやめとなりました.

11月15日(日) 第1会場	11月15日(日) 第2会場	11月15日(日) 第3会場	11月15日(日) 第4会場	11月15日(日) 第5会場	11月15日(日) 第6会場	11月15日(日) 第7会場
9:00~10:40 鍛造 I (座長 山中 晃徳君)	9:00~10:40 テーマセッション9-I 半溶融・半凝固加工、 溶融加工の最新動向 (産長 西田 進一君)	9:00~10:40 せん断 I (座長 笹田 昌弘君)	9:00~10:40 板材成形 V (座長 日野 隆太郎 君)	9:00~10:40 テーマセッション4-Ⅲ 3D積層造形技術の最前線 (座長 中本 貴之君)	9:00~10:20 テーマセッション10- I 板材・バルク材シミュレーションの 高精度化に資する、材料や 環境条件のモデリング技術 (座長 杉友 宣彦 君)	9:00~10:40 接合 I (座長 行武 栄太郎君)
	塑 学 *山崎 一輝 (大阪工大・院)塑 正 羽賀 俊雄 (大阪工大)	★ 結晶粒極低炭素鋼における不均 一変形挙動の調査 塑 正 浜 孝之 (京 大) 塑 学 *西 拓樹 (京大・院)	★ 夕同定精度検証 塑 正 *玉城 史彬 (JFEスチール) " 石渡 亮伸 (") " 玉井 良清 (")	金属粉末積層造形における粉末 の役割 *野村 直之 (東北大)	ンのための材料モデルと成形限 界クライテリオン(1)(2)	726 順送加工に資する帯板状固定抵抗器用材料の摩擦攪拌接合 軽 正 *平田 智丈 (大阪技術研) " 田中 努 (") 蛭田 修平 (特金エクセル)
127 サーボプレスのモーション制御 ★ を活用した前方押出し歯形部形 状精度の向上 鉄 正 *新貝 康晴 (日本製鉄) 塑 正 西村 隆一 (n) 佐藤 明 (日鉄精圧品)	227 クラッド板の双ロールキャス ターによる鋳造 塑 正 *羽賀 俊雄 (大阪工大)	★ の引張強さと全伸びの予測 塑 正 *中村 尚誉	★ 理領域の最適化 塑 学 *後岡 一騎 (大同大・院) 塑 正 西脇 武志 (大同大)			727 ショットピーニングによるマグ ★ ネシウム合金への異種材接合 塑 学 *中嶋 優作
128 ハンマー型鍛造における金型弾 ★ 性変形を考慮した数値ンミュ レーション手法の検討 塑 正 *内堀 智博 (神戸製鋼) ″ 柿本 英樹 (″) 池上 智紀 (″)	する板に発生するバリ 塑 正 *羽賀 俊雄 (大阪工大)	★ の磁化特性 塑 正 安部 洋平(豊橋技科大) 塑 学 *八木田 諒	★ る赤池情報量規準の適用 塑 学 *齋藤 佑太 (日本工大・院) 塑 正 瀧澤 英男 (日本工大)	いたマルエージング鋼の積層造形における造形条件が未溶融欠陥生成に及ぼす影響 型 正 *沓掛 あすか	実験検証 塑 学 *呉 松 (阪大接合研) Sherif Rashed (")	ンによるアルミニウム板材の接合 塑 正 *小平 裕也 (太陽工業) n 小林 信彦 (n) n 小平 直史 (n)
★ 間鍛造金型の接触面形状の検討		★ 結晶粒微細化機 正 * 永島 史悠 (東工大・院)塑 正 吉野 雅彦 (東工大)	★ 応力緩和挙動塑 学 *大古田 和樹 (山形大・院)	★ の組織および機械的性質 金 学 *下村 翔 (鳥取大・院) 山根 壮平 (") 金 正 音田 哲彦 (鳥取大)		合しきい値の検討 塑 正 *洞田 直人 (大豊工業)
★ 要因分析手法の検討		330 デジタル画像相関法を用いた平面ひずみせん断加工のその場観察 塑 正 * 吉田 佳典 (岐阜大) 	★ 塑 学 * 永井 慎吾 (名大・院) 塑 正 湯川 伸樹 (名 大)	★ ステンレス鋼の組織と耐食性・機械的性質 金 学 *大津 彬 (鳥取大・院)		730 不連続繊維の流動を活用した熱 可塑性CFRPの接合法の開発 塑 学 *田中 涼介(金沢大・院) 塑 正 立野 大地 (金沢大) " 米山 猛 (")

[★]は、「優秀論文講演奨励賞」の対象講演でしたが、取りやめとなりました.

11月15日(日) 第1会場	11月15日(日) 第2会場	11月15日(日) 第3会場	11月15日(日) 第4会場	11月15日(日) 第5会場	11月15日(日) 第6会場	11月15日(日) 第7会場
10:50~12:10 鍛造 II (座長 前野 智美 君)	10:50~12:30 テーマセッション9-II 半溶融・半凝固加工, 溶融加工の最新動向 (座長 羽質 俊雄君)	10:50~12:30 せん断Ⅱ (座長 安富 隆君)	10:50~12:30 テーマセッション3-I 形状および内部構造や組成まで 進化するポーラス材料 (座長 吉村 英徳 君)	10:50~12:10 テーマセッション4-IV 3D積層造形技術の最前線 (座長 野村 直之君)	10:50~12:30 テーマセッション10-II 板材・バルク材シミュレーションの 高精度化に資する、材料や 環境条件のモデリング技術 (座長 吉田 住典 君)	10:50~11:50 接合 II (座長 木村 南君)
★ 変形抵抗測定手法の提案塑 正 *鈴木 敦 (日本製鉄)	★ における混練部の温度分布に関する研究	★ けるPVD被膜の性能評価 塑 正 *三宅 弘人 (JFEスチール) " 興津 貴隆 (本田技研) " 新宮 豊久 (JFEスチール)	★ Johnson-Cook破壊則を用いた大変形解析 塑 学 * 関根 将弘 (都立大・院)	★ の組織に及ぼす微量添加物の影響 金 学 *大津 彬 (鳥取大・院) " 大澤 守 (")	631 非線形二軸負荷経路での軟鋼板 ★ の塑性流動とその発展 塑 正 浜 孝之 (京 大) 塑 学 * 岡上 隆一郎 (京大・院) " 達川 昂至 (")	731 植込鍛接による鋼軸とポリカー ポネート板の接合 塑 正 *松本 良 (阪 大)
★ 力・摩擦パラメータの推定 塑 正 *浦谷 政翔 (IHI) " 山中 晃徳 (農工大)	★ ミニウム合金の双ロールキャス ティング塑 学 *萩原 真人(群馬大・院)	けるパンチ損傷の特徴 塑 正 *興津 貴隆 (本田技研) " 三宅 弘人	★ 3D積層造形ポーラス金属の設計	★ 純Tiの組織および機械的性質金 学 *大澤 守 (鳥取大・院)″ 大津 彬 (")	型 正 浜 孝之 (京 大) 型 学 *平山 健太郎(京大・院) 塑 正 宅田 裕彦 (京 大)	★ 穴抜き接合塑 正 森 謙一郎(豊橋技科大)
結晶シミュレーション 塑 正 *齋藤 実奈子 (IHI) " 浦谷 政翔 (")	★ 銅合金C19210の薄板連続鋳造 塑 学 *今井 昇吾(群馬大・院) 大野 久美智	★ 用いた異形棒鋼のせん断加工の 有限要素解析 塑 正 *谷口 周平 (東陽建設工機) "早川 邦夫 (静岡大)	 ★ 規則セル構造体の設計および大変形解析 塑 学 *高玉 怜史(都立大・院) 別根 将弘(") 	★ の積層造形金 学 *北川 賢介(鳥取大・院)	# 桑原 利彦 (農工大)	
134 AZ91マグネシウム合金鋳造材の ★ 搬造特性に及ぼすCaとMm添加の 影響 軽 正 *勝山 秀信 (茨城産技イノ) 塑 正 行武 栄太郎(")	★ たMg/A1合金クラッド材の製造 塑 正 *馮 庚琰 (東京電機大・院) " 戸塚 穂高(") 機 正 鈴木 真由美 (富山県立大) 塑 正 渡利 久規(東京電機大)	"米山猛(") 伊吹基宏(大同特殊鋼)	★ に関する研究塑 学 *藤井 惇平 (奈良高専・学)塑 正 谷口 幸典 (奈良高専)	534 画像計測引張試験法で得られた ★ 3D造形ハステロイX合金の大ひず み城までの高温真応カ一真ひす み曲線 鉄 正 *伊東 篤志 (兵庫県立大) 鉄 学 多賀 公則	■ 用薄鋼板の大変形域変形抵抗の 測定 型 学 *中川 雄介 (鳥取大・院) 型 正 松野 崇 (鳥取大) " 浜 孝之 (京 大) 内藤 正志 (本田技研) 型 正 興津 貴隆 (") "	
	★ ロール鋳造材の結晶組織に及ぼ す注湯温度の影響 塑 正 *戸塚 穂高		ラスアルミニウムへの形状付与 の検討 塑 正 *半谷 禎彦 (群馬大)		635 楕円空孔モデルを用いた二軸薄 板引張時の延性破壊予測 塑 正 *小森 和武 (大同大)	

[★]は、「優秀論文講演奨励賞」の対象講演でしたが、 取りやめとなりました.

11月15日(日) 第1会場 11月15日(日) 第2会場	11月15日(日) 第3会場	11月15日(日) 第4会場	11月15日(日) 第5会場	11月15日(日) 第6会場	11月15日(日) 第7会場
13:30~14:50 13:30~14:30	13:30~15:10	13:30~15:10 テーマセッション3-Ⅱ	13:30~14:30 テーマセッション4-V	13:30~15:10 テーマセッション10-Ⅲ	13:30~14:50
鍛造皿 粉末成形	せん断Ⅲ	形状および内部構造や組成まで 進化するポーラス材料	3D積層造形技術の最前線	板材・バルク材シミュレーションの高精度化に資する。材料や	接合Ⅲ
(座長 金 秀英 君) (座長 飯塚 高志 君)	(座長 山崎 雄司 君)	(座長 半谷 禎彦 君)	(座長 木村 貴広 君)	環境条件のモデリング技術 (座長 浜 孝之君)	(座長 小平 裕也 君)
	★ るめっき種がせん断面に及ぼす 影響		★ 料モデル開発と結合機構の観察	636 A1合金の熱間鍛造における工具- ★ 素材間の有限要素解析と機械学 習に基づく逆解析を用いた摩擦 パラメータの同定	た超高張力鋼板によるメカニカ
 塑 学 * 曽我 龍熙 (東京電機大・院) 石毛 大哉 (東京電機大・学) 塑 正 武田 翔 (π) 塑 正 柳田 明 (東京電機大) 塑 正 中山 昇 (信州大) 武石 洋征 (千葉工大) 	塑 正 *小林 亜暢 (日本製鉄) " 安富 隆 (")	,,	塑 学 *王 倩 (阪大・院) 塑 正 麻 寧緒 (阪大接合研)		塑 正 安部 洋平(豊橋技科大) 塑 学 *任 暁竜 (豊橋技科大・院) 塑 正 森 謙一郎(豊橋技科大)
137 熱間圧縮での加熱温度による純 237 温間圧縮せん断法を用いた純 チタンの変形挙動及び内部組織 の変化 粉末成形材における機械的特付 評価				「637 Ni合金の熱間鍛造における摩擦 ★ パラメータの最適化手法を用い た自動同定	737 接着剤を併用してメカニカルク リンチングされた高張力鋼板と アルミニウム合金板の2点接合 部の接合強度
塑 正 *朴 亨原 (公立小松大) 機 学 *小柴 悠輔 (東北大・院 " 金 勁賢 (東大・院) 塑 正 三木 寛之 (東北大流体研) (東北大流体研) 機 正 武田 翔 (" (重北大流体研) 塑 正 中山 昇 (信州大 	ッ 安富隆 (ッ)		塑 正 牧野 武彦 (名工大)		塑 正 *安部 洋平(豊橋技科大)″ 多田羅 悠 (豊橋技科大・院)ポ 森 謙一郎(豊橋技科大・院)
138 棒材のヘッデイング加工における塑性座屈の予測	える亀裂進展の影響 塑 正 *安富 隆 (日本製鉄) 〃 本多 由明 (〃)	438 ガラス繊維編物強化プラスチッ ★ ク製サンドイッチコアの開発 塑 正 *高橋 俊也 (都立産技研) 豊川 安枝 (利昌工業) 唐木 由佑 (都立産技研) 窪寺 健吾 (")	レートの開発 第1報 数値解析によるプレー ト強度に及ぼすプレート諸元の 影響評価 塑 正 *角谷 達也 (大阪冶金興業) " 山口 誠二 (中部大)	★ る流動応力の転位密度ベースモデリング 型 学 *中村 丞 (東北大・院) 型 学 *中村 丞 (東北大・院) 型 正 上島 伸文 (東北大) " 及川 勝成 (")	★
花田 秀美 (n 伊藤マナブ (n) 精 正 梶原 優介 (東大生研. *** *** *** *** *** *** *** *** *** *	339 仕上げ抜きにおけるダイス刃先	★ 成形したチタン繊維製多孔質材料の機械的性質に及ぼす圧縮荷重の影響塑 学 *田中 琢幹(信州大・院)		639 強ひずみ加工材の弾粘塑性挙動 ★ のモデル化 塑 学 *福田 嘉紘 (山形大・院) 塑 正 黒田 充紀 (山形大) 640 冷間圧延鋼板の非単調引張にお ★ ける負荷条件と伸びの関係 塑 正 *上島 伸文 (東北大・学) 塑 正 及川 勝成 (東北大)	データベースの構築

[★]は、「優秀論文講演奨励賞」の対象講演でしたが、取りやめとなりました。